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Nonlinear propagation of short intense laser pulses in a hollow metallic waveguide
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The propagation of a short intense laser pulse in the femtosecond range in a hollow metallic waveguide gives
rise to heating of the metallic wall. The temperature of the degenerate electron gas in the wall is increased
during the pulse duration and this heating affects the propagation and dissipation of the laser pulse. Analytical
and numerical analysis shows that, as the dissipation is increased, the leading edge of the pulse decreases more
slowly than the rear, resulting in a pulse shortening.
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I. INTRODUCTION

Recent progress in the generation of ultraintense shor
ser pulses~see, for example, Ref.@1#! has made possible
number of scientific and technical applications, such
plasma-based particle accelerators@2#, x-ray lasers@3#, iner-
tial confinement fusion@4#, and laser induced nuclear rea
tions @5#. The propagation of a pulse over a long distance
a crucial condition for all these applications. However, t
length of the high intensity laser region is typically limite
by the laser diffraction, which is twice the Rayleigh leng
Various methods are now being investigated to overco
this limitation. One of them is based on the relativistic a
ponderomotive self-channeling of pulses in a plasma@6#. An-
other method is to guide a laser pulse in a preformed pla
density channel@7# produced as a result of gas ionization
another laser pulse@8# or by slow capillary discharge@9#. An
alternative approach is the use of solid guides, namely, c
illary tubes.

The transmission of laser pulses up to 1 TW through h
low glass capillary tubes with diameters of the order of 1
mm was studied first in@10# and for laser pulses with powe
10 TW in @11#. In both of these experiments the guiding w
multimode, leading to a complex transverse intensity rep
tition of the transmitted light. Monomode guiding in hollo
capillary dielectric tubes of intense laser pulses (116

W/cm2! over 100 Rayleigh lengths was demonstrated in@12#.
Experiments with higher pulse intensities in metallic and
electric hollow tubes as well as with gas filled tubes are n
in progress.

Within the usual linear theory, the propagation of elect
magnetic waves in a capillary tube is supposed to be in
pendent of the wave intensity~see, for example,@13#!. This
approximation becomes invalid for high intensity las
pulses, as the properties of the tube walls and of the fill
gas are modified by the laser pulse. In the case of sufficie
low gas pressure the nonlinear effects arising because o
ionization and walls heating may be treated as independ

The aim of this paper is to formulate the basic equatio
describing self-consistently the short intense laser pu
propagation and wall heating in the case of a hollow meta
waveguide. For simplicity, the propagation of the laser pu
will be considered in a plane waveguide. The electron te
1063-651X/2001/64~1!/016404~7!/$20.00 64 0164
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perature in the walls is assumed to remain less than
Fermi temperature. In addition the pulse duration is taken
be so small that the ions of the metal lattice may be con
ered as immobile.

The analytical and numerical solutions of the basic eq
tions show that the trailing part of a laser pulse dissipa
more than the leading one. As a result of this nonlinear eff
the form of the propagating pulse is changed so that the p
duration decreases and the overall pulse attenuation
creases. Naturally, the nonlinear effects become weake
the process of pulse propagation as its intensity decreas

II. BASIC EQUATIONS

To investigate the problem of the nonlinear effects due
heating of waveguide walls on short laser pulse propaga
we study here for simplicity the slab geometry. Let us co
sider a waveguide with metallic walls atuyu>a and with axis
alongOZ, the direction of propagation.

The electric field of the laser pulse is taken in the form

Ẽ5Re$E exp~2 ivt1 ikz!%,

wherev andk are the frequency and the axial component
the wave vector of the laser radiation, respectively, a
E(y,z,t) is the slowly varying~on the scales 1/v and 1/k!
complex amplitude of the field. For the pulse envelo
E(y,z,t) we have from Maxwell’s equations

2ivS ]

]t
1Vg

]

]zDE1c2
]2E

]y2 1~v2e2k2c2!E50, ~1!

whereVg5kc2/v is the group velocity ande is the dielectric
constant, assumed to be equal to unity in the vacuum pa
the waveguide (uyu,a). The effect of group velocity disper
sion is omitted, assuming that the nonlinear effect of the w
heating is more important for the evolution of the laser pu
envelope. Thus small corrections due to dispersion of
dielectric function of the wallse, its space and time deriva
tives, and higher order derivatives of the electric field en
lope are omitted in this equation.

Multiplying Eq. ~1! by the complex conjugate amplitud
E* and integrating overy from 2` to 1` we arrive at the
©2001 The American Physical Society04-1
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following equation for the electromagnetic energy variati
in each cross section of the laser pulse propagating in
waveguide:

S ]

]t
1Vg

]

]zD E2a

a uEu2

8p
dy52

v

4p E
a

`

Im~e!uEu2 dy, ~2!

where symmetry of the fielduE(2y)u5uE(y)u was assumed
and the small value of the energy in the skin layers of
walls was neglected in comparison with the energy in
vacuum part of the waveguide.

The transverse structure of the waveguide modes is de
mined by Eq.~1! and by the boundary conditions corr
sponding to the continuity of the tangential components
the electric and magnetic fields at the wall surfacesy5
6a. The explicit analytical form of the mode structure c
be found if the spatial variation of the dielectric constane
~due to heating of the walls by the laser pulse! is small on the
scale of the skin depth. This is just the case of the h
frequency skin effect~see, e.g.,@14#! when the real part of
the dielectric constant~which determines the field structure!
remains constant while the small imaginary part@ Im e!ueu#
responsible for the laser pulse absorption can be chan
substantially due to the heating of the waveguide walls d
ing the laser pulse propagation. The physical conditions
this regime will be discussed later. With these restrictions
mind, let us specify the energy conservation law~2! for dif-
ferent waveguide modes.

A. S-polarized laser field „TE modes…

In this case the electric fieldE5(Ex,0,0) has anx com-
ponent only and a solution of Eq.~1! can be found in the
form

Ex5E0~z2Vgt,z!Yn~y!, ~3!

where for symmetrical modes

Yn~y!5H cos~k'
~n!y!, uyu,a

b exp@2k~ uyu2a!# uyu.a,
~4!

k>Ak22(v2/c2)e in accordance with Eq.~1!, and Rek
.0, while Ree,0 for metallic walls. The continuity ofEx
and]Ex /]y}Bz at the waveguide wallsy56a,

b5cos~k'
~n!a!, ~5!

kb5k'
~n! sin~k'

~n!a!,

determines the boundary field amplitude at the wallb and the
dispersion equation for the transverse wave vectork'

(n) :

tan~k'
~n!a!5

k

k'
~n! . ~6!

For wide enough waveguides~in comparison with the lase
wavelengthl52pc/v!a! and for modes with not very
high numbersn, whenuku@k'

(n) , the solutions to Eq.~6! are
01640
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k'
~n!>

p

2a S 12
1

kaD ~112n!, n50,1,2, . . . . ~7!

This expression together with Eqs.~3!–~5! gives the follow-
ing ratio of the laser field at the wallEw to the field on the
waveguide axisE0 :

UEw

E0
U[b>

p

2

~112n!

ukua
. ~8!

For each mode~4!, Eqs.~3! and~8! enable one to write down
the equation for the electromagnetic energy variation~2! in
the form

]

]z
lnuE0~j,z!u2522

v

Vga UEw

E0
U2E

a

`

Im~e!

3exp@22 Re~k!~y2a!#dy, ~9!

where we introduced the new variablesz and j5z2Vgt,
which determine the distance of the laser pulse propaga
and the form of the pulse envelope in the comoving fram
The group velocities of distinct modes are different, but,
accordance with Eq.~1!, for not very high mode number
they are close to the speed of light:

Vg[
kc2

v
>cF12

~112n!2

32 S l

aD 2G . ~10!

It is worth noting also that in a linear regime, when Ime
5Im e05const, Eq.~9! takes the form

]

]z
lnuE0~j,z!u2522k09[2

v

Vg Re~k!a UEw

E0
U2

Im e0 ,

~11!

which can be obtained directly from Eq.~1! by introducing
E0(j,z)5Ē0(j)exp(2k09z) in Eq. ~3!. The imaginary part of
the longitudinal wave vectork09 is determined by the disper
sion equation, which follows from Eq.~1!, through the
imaginary part ofk'

(n) specified by Eq.~6!. Therefore it is
given by

k095
p2

8

~112n!2

Re~k!uku2a3

v

Vg
Im e0

in full agreement with Eqs.~8! and ~11!.

B. P-polarized laser field „TM modes…

In this case the laser pulse has only anx component for
the magnetic fieldBx and two components of the electr
field

Ey>2
Bx

e
, Ez>2 i

c

ve

]Bx

]y
. ~12!

Let us use for they component of the electric field a form
analogous to Eq.~3!:
4-2
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NONLINEAR PROPAGATION OF SHORT INTENSE . . . PHYSICAL REVIEW E 64 016404
Ey5E0~z2Vgt,z!Yn~y!, ~13!

where the transverse structure of the modes is determine
Eq. ~4!. The continuity of tangential componentsEz andBx
at the waveguide wallsy56a, which corresponds in accor
dance with Eq.~12! to the continuity of]Ey /]y and eEy ,
leads to the following boundary conditions:

eb5cos~k'
~n!a!, ~14a!

kb5k'
~n!sin~k'

~n!a!, ~14b!

and to the dispersion equation for the transverse wave ve
k'

(n)

tan~k'
~n!a!5

k

ek'
~n! . ~15!

Under the conditionuk'
(n)u!uk/eu @i.e., (11n)l/a!4/ueu1/2#,

the solutions of this equation are

k'
~n!>

p

2a S 12
e

kaD ~112n!, n50,1,2, . . . . ~16!

Due to Eqs.~12!, the longitudinal componentEz is propor-
tional to the transverse derivative ofEy :

Ez> i
c

v

]Ey

]y
. ~17!

It is evident from Eqs.~13!, ~4!, and ~16! that, inside the
waveguide (uyu,a), the amplitude ofEz is small in com-
parison withEy ~as uk'

(n)ul!1!, while in the walls (uyu.a)
the inverse ratio is valid: uEz /Eyu2>ueu@1. This means
that, in the left hand side of the conservation law~2!, only
the transverse componentEy has to be taken into accoun
while in the right hand side of Eq.~2! the main component o
the laser field is the longitudinal oneEz . Equations~17! and
~13! together with~14! and ~16! determine the ratio of thez
component of the laser field at the wallEz(y5a)[Ew to the
y component field on the waveguide axisEy(y50)[E0 :

UEw

E0
U> p

2

~112n!

av/c
. ~18!

As a result, for each TM mode the equation for electrom
netic energy variation~2! has exactly the same form~9! as
for TE modes, but in the case of aP-polarized laser field the
ratio uEw /E0u2 is determined by Eq.~18!. The group veloci-
ties of TM modes are determined as before by Eq.~10! if the
mode number is not very high: 112n!4a/(lueu1/2). For
the propagation of the TM mode in a linear regime, wh
Im e5Im e05const, Eq.~9! takes the form~11! which again
can be obtained directly from Eq.~1! with E0(j,z)
5Ē0(j)exp(2k09z) in Eq. ~13!. Therefore the imaginary par
of the longitudinal wave vector is given by

k095
p2

8

~112n!2

Re~k!~v/c!2a3

v

Vg
Im e0 ,
01640
by

tor

-

n

in full agreement with Eqs.~11! and ~18!.
Equations~8!, ~18!, and ~9! show that the attenuation o

TM modes due to absorption in the metallic walls is mu
higher, by a factor ofueu@1, than that of TE modes with the
same mode numbern. The absorption increases strongly f
higher mode numbers as (112n)2, and decreases for wide
waveguides asa23. These equations, providing Ime is
known, describe the laser pulse propagation in an absor
metallic waveguide with regard to a nonlinear modificati
of the pulse’s temporal shape due to the heating of the w
by laser radiation.

C. Model of metallic walls

To describe the high frequency response of the meta
walls we use the Drude-Sommerfeld model for the dielec
constant of metals@15,16#:

e512
vp

2

v~v1 in!
, ~19!

wherevp andn are the plasma and collision frequencies
electrons, respectively. For laser wavelengths of the orde
1 mm, the inequalityvp@v is valid; the electron collision
frequency has to be small compared to the laser freque
(n!v). These conditions correspond to the high frequen
skin effect @14# when the real and imaginary parts of th
dielectric constant are given by

Ree>2
vp

2

v2 , Im e>
vp

2

v2

n

v
. ~20!

The energy of a short, subpicosecond laser pulse, is tr
ferred mainly to electrons while the change in the latt
temperatureTlat is relatively small. Therefore the electro
thermal energy is determined mainly by the processes o
ser heating and electron heat conduction:

C
]Te

]t
2

]

]y S kT

]Te

]y D5
v

8p
Im~e!uEu2, ~21!

whereTe is the electron temperature;C the thermal capacity
andkT the thermal conductivity in the case of a degener
electron gas (Te,TF) have the forms

C~Te!5
p2

2
ne

Te

TF
, kT~Te!5

1

3
VF

2 C~Te!

n~Te!
. ~22!

TF and VF are the Fermi temperature and velocity, resp
tively, andne is the density of conduction electrons.

For sufficiently low intensities of the laser radiation at t
walls, when the electron temperatureTe does not exceed the
Fermi temperatureTF , the plasma frequencyvp can be as-
sumed to be a constant and the temperature dependen
the electron collision frequency has the form@17#

n~Te!5n0F11
Te

2

TFTlat
G , ~23!
4-3



y
n

em
f

an

se
a-
th

e
r,
re
r
r

b
-

ri

by

he

the
n
the

oc-
ion
one

ra-
cale
lled
e of
ron

ex-

ide

for
he

N. E. ANDREEV et al. PHYSICAL REVIEW E 64 016404
wheren0'Tlat /\ is the electron-phonon collision frequenc
and the lattice temperatureTlat is assumed to be larger tha
the Debye temperature. The second term in Eq.~23! corre-
sponds to electron-electron collisions@15,16# and becomes
predominant for a sufficiently overheated electron syst
whenTe.T* 5(TlatTF)1/2'0.3 eV for typical parameters o
metals~TF'5 eV, Tlat'2.631022 eV5300 K!.

It should be noted that in Eq.~21! the collisions of elec-
trons with the metal boundaries were omitted. This me
that this assumption is correct if the skin depthd>k21

>c/vp is large compared to the electron mean free pathl e
'VF /n. Also, the concept of a temperature also suppo
the smallness ofl e in comparison with the scale of temper
ture variations, which can be of the order of the skin dep
At room temperature the ratio (d/ l e), calculated on the bas
of data taken from@15#, is of the order of 0.3–0.5 for coppe
near to 0.8 for aluminum, and around 4 for lead. Therefo
this assumption is acceptable for lead from room tempe
ture, while for Cu and Al it is quantitatively correct afte
some preheating of electrons from room temperature toTe
.T* .

As long as the electron collision frequencyn is small
compared to the laser frequency, a condition that can
written asTe,T* (v/n0)1/2, the imaginary part of the dielec
tric constant is determined by Eqs.~20! and ~23!:

Im e5
vp

2n0

v3 S 11
Te

2

TFTlat
D[Im~e0!S 11

Te
2

TFTlat
D . ~24!

In the frame comoving with the laser pulse and with va
ablesj5z2Vgt andz, which were used in Eq.~9!, the heat
conduction Eq.~21!, in view of Eqs.~22!–~24!, can be trans-
formed for the function

G~j,y,z!5 ln Y~j,y,z![ lnS 11
Te

2

TFTlat
D ,

to the equation

]G

]j
52bI ~j,z!expS 22

vp

c
~y2a! D2D exp~2G!

]2G

]y2 .

~25!

The laser pulse intensity on the waveguide axisI (j,z)
5cuE0(j,z)u2/8p is determined forS or P polarization by
the x or y component of the laser electric field envelope~3!
or ~13!, respectively;

b5
4

p3

r 0l2

cTlat

n0

c UEw

E0
U2

, D5
1

3

VF
2

cn0
, ~26!

r 05e2/mc2 is the classical electron radius, anduEw /E0u is
determined by Eq.~8! or Eq. ~18! for TE or TM modes
respectively. By means of the expression~24! the tempera-
ture dependence of the laser pulse absorption in Eq.~9! can
be explicitly written through the functionG:
01640
s

s

.

,
a-

e

-

]

]z
ln I ~j,z!

522k09E
a

`

expFG~j,y,z!22
vp

c
~y2a!G 2vp

c
dy,

~27!

where Rek has been taken asvp /c and 2k09 is the linear
attenuation coefficient determined by Eq.~11! and, in accor-
dance with Eq.~24!, equal to

2k095
c

Vga UEw

E0
U2 vpn0

v2 ~28!

Going back to the heat conduction equation~21!, one can
get some insight into the heating mechanism in the wall
considering the characteristic length of diffusionLD , which
is defined as

LD5S kTtp

C D 1/2

[S VF
2

3n
tpD 1/2

, ~29!

wheretP is the laser pulse duration. The comparison of t
diffusion lengthLD with the skin depthd;k21, where en-
ergy deposition occurs, leads to two different regimes for
heating of the wall. IfLD@d, the laser energy deposited i
the skin depth diffuses from the metallic surface and
heating is dominated by thermal diffusion. IfLD,d, the
thermal conduction is blocked and the energy deposition
curs in the skin depth; then one can neglect the diffus
term in the heat conduction equation and this can be d
provided the following inequality is satisfied:

n0

vp
S 11

Te
2

TFTlat
D @

vptp

3

VF
2

c2 . ~30!

This last regime gives rise to local heating: the tempe
ture in the skin depth increases on a much shorter time s
and reaches much higher values than in the regime contro
by conduction. These effects are due to the dependenc
the diffusion coefficient on the inverse square of the elect
temperature as shown by Eqs.~22! and ~23!.

From the previous expressions for theE and B fields in
the waveguide and using the Poynting vector, one can
press the flux of energy that is dissipated in the wallFw and
the laser flux at the center of the hollow metallic wave gu
Fc . The ratio of these two fluxes can be written forSpolar-
ization as

Fw

Fc
5

p2~112n!2

8k2a2

n~Te!

v

v

vp
, ~31!

and forP polarization as

Fw

Fc
5

p2~112n!2

8k2a2

n~Te!

v

vp

v
. ~32!

If the absorbed flux at the wall is greater than the flux
which plasma formation occurs at the metal wall during t
4-4
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NONLINEAR PROPAGATION OF SHORT INTENSE . . . PHYSICAL REVIEW E 64 016404
pulse duration of the laser, the model will not hold and t
thermal capacity and conductivity of the plasma produced
the wall have to be taken into account together with
electron-electron collision frequency in the plasma.

Therefore, in this model of a degenerate electron gas,
set of equations~25!–~28! describes self-consistently the la
ser pulse propagation in a metallic waveguide with heat
of waveguide walls as long as the electron temperature
mains less than the Fermi temperature of the metal an
long as no ionization takes place.

III. SIMPLIFIED ANALYTICAL SOLUTION
„LOCAL HEATING …

For short enough laser pulses and for metals with not
small electron collision frequenciesn0 , the heat conductivity
has no significant influence on the variation of the elect
temperature~the corresponding conditions will be derive
later!. In this case the second term in the right hand side
Eq. ~25! can be neglected and the solution of Eq.~25! can be
written in the form

G~j,y,z!5G0~j,z!expF22
vp

c
~y2a!G ,

G0~j,z![G~j,y5a,z!5bE
j

`

I ~j8,z!dj8. ~33!

Equation~27!, which gives the shape of the laser pulse a
propagates along the waveguide, can be written as

]

]z
ln I ~j,z!52

2k09

G0
@exp~G0!21#. ~34!

In the limit G0→0, which corresponds to the omission
nonlinear effects due to wall heating, this equation is tra
formed to the linear Eq.~11!.

The explicit analytical solution to the set of Eqs.~29!,
~30! can be found for small variations of the initial las
pulse shape whenG0,1 and in Eq.~29! the approximation
I (j,z)>I (j,z50) can be used. Then we have

I ~j,z!5I ~j,z50!

3expF22k09zS 11
1

2
bE

j

`

I ~j8,z50!dj8D G .
~35!

To point out the nonlinear effect of the laser pulse sha
deformation due to the heating of the waveguide walls, le
consider the initially rectangular laser pulse envelope

I ~j,z50!5I 0@Q~j1L !2Q~j!#, ~36!

whereL5ctp is the initial pulse length. With Eq.~32! the
solution ~31! takes the form

I ~j,z!5I 0 exp@22k09z~11 1
2 bI 0uju!#, 2L<j<0.

~37!
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The solution~37! evidently shows that the leading part of th
laser pulse (j→0) evolves as in the linear case while th
rear part of the pulse dissipates more strongly due to the
heating. This effect leads to shortening of the pulse during
propagation in the waveguide. Equation~37! can be used for
a crude estimation of the pulse length decrease. For a
enough distance of propagation, the full width at half ma
mum duration of the pulsel FWHM decreases as the invers
power of the laser intensity and of the length of propagati

l FWHM~z!5
ln 2

bI 0

1

k09z
, k09z.

ln 2

bI 0L
. ~38!

As an example let us consider the laser pulse with the ca
frequencyv5231015 s21 and durationtp550 fs, propagat-
ing in the form of the fundamental TM mode (n50) into a
metallic waveguide made of lead~vp52.1331016 s21, VF
51.833108 cm/s,n057.131014 s21 @15#! with a width 2a
540mm. The thermoconductivity term in Eq.~21! is smaller
than the term related to thermocapacity due to the inequa

~n0 /v!.~vptp/3!~VF /c!2.

which is valid for the parameters indicated above. The ma
mum laser intensityI 0 at the entrance of the waveguide
taken to be 1014 W/cm2. Then in accordance with Eq.~38!
for distances of propagation exceeding 20 cm the pu
length decreases as

l FWHM /L'20/z.

IV. NUMERICAL RESULTS

The set of Eqs.~25!–~28!, describing the evolution of the
laser pulse shape and of the temperature in the wall as
pulse propagates along the waveguide, was solved num
cally for the main TM mode withn50 in Eq. ~18!. The
initial temporal laser pulse envelope was taken to be Ga
ian:

I ~j,z50!5I 0 expF24 ln 2
j2

~ctp!2G , ~39!

with the FWHM pulse durationtp5100 fs, intensity on the
waveguide axis at the entrance of the capillaryI 05331015

W/cm,2, and wavelengthl50.8 mm (v52.3531015 s21).
The width of the Cu waveguide was taken as 2a520mm,
and the other parameters were@15# TF58 eV, n0

50.431014 s21, andvp51.631016 s21.
The results of the calculations are presented in Figs. 1

2. Figure 1 shows the normalized on-axis intensityI max(z)/I0
and maximum electron temperatureTe,max/TF reached on the
wall as functions of the distance of laser pulse propagat
The result of the linear theory~11! is also shown in Fig. 1 by
a short-dashed line. It is evident that the heating of the wa
guide walls leads to enhanced laser pulse dissipation in c
parison with the linear regime described by Eq.~11!. The
maximum temperature of the walls decreases with increa
distance as the pulse intensity becomes lower due to abs
tion in the walls. Figure 2 demonstrates the effect of the la
4-5
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N. E. ANDREEV et al. PHYSICAL REVIEW E 64 016404
pulse shortening due to the wall heating in qualitative agr
ment with the simplified solution~37!,~38!.

In order to check that plasma formation at the meta
wall can be discarded, the absorbed laser flux at the met
wall has to be less than the flux for which ablation and io
ization take place for copper and for laser pulses of the s
duration; this flux has been measured to be around 431012

W/cm2 @18#. To get an estimation of the flux absorbed at t
metallic wall at the maximum of the laser pulse, we u
expression~32!, with the maximum value of the temperatu
reached by the wall~after the maximum of the laser pulse! as
it appears from Fig. 1, 2.8 eV; this gives an overestima
value of the absorbed flux of 331012 W/cm2, less than the
threshold for ablation and ionization.

Analogous results for an Al wave guide of the same wid
2a520mm are presented in Figs. 3 and 4. In this ca
the parameters wereTF511 eV, n051.2531014 s21, vp
52.3231016 s21 @15#, and the maximum initial laser puls
intensity was I 050.7531015 W/cm2. Concerning plasma
formation, using the same arguments one finds that the
sorbed flux at the Al wall is less than 831010 W/cm2, well
within the threshold for plasma formation.

As a consequence of the higher electron-phonon collis
frequencyn0 in Al, the laser pulse absorption is greater th
in the Cu waveguide and is closer to the linear regim
Therefore the effect of pulse shortening is not so p
nounced, as is seen from a comparison of Figs. 2 and 4

FIG. 1. The maximum values of the laser pulse intensity on
waveguide axis~solid line! and maximum electron temperature
the walls~line with squares! as functions of the distance of the las
pulse propagation in a Cu waveguide. For comparison, this inten
as computed by Eqs.~11! and~18! is given in the linear case~short-
dashed line!. Parameters are given in the text.
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V. DISCUSSION AND CONCLUSIONS

The propagation of a short intense laser pulse in a hol
metallic waveguide is accompanied by heating of the me
lic walls. If the temperature of the electrons of the wa
increases substantially within the laser pulse duration,
properties of the walls are changed and this nonlinear ef
modifies the conditions of pulse propagation. In this pa
we investigated the high frequency skin effect when the n
linear effects are due to variations of the electron collis
frequency in a metallic waveguide, therefore modifying t
dissipation of the laser pulse energy into the walls.

The set of Eqs.~25!–~28!, obtained together with Eq.~8!
or Eq. ~18! for TE or TM mode, respectively, describes se
consistently the heating of waveguide walls and the la
pulse propagation in the waveguide. The analytical and
merical analysis of these equations shows that the wall h
ing results in two points. First, the attenuation of the inten
laser pulse increases in comparison with the linear regi
which is valid for weak laser pulses. Secondly, the tempo
form of the laser pulse is changed in the process of pu
propagation. The energy of the leading part of the pulse
creases more slowly than that of the rear part, resulting
laser pulse shortening.

Our model of metallic waveguide walls is quantitative
correct in the case of a degenerate electron gas with
electron mean free pathl e>VF /n smaller than the skin depth
d>c/vp . These conditions imply the range of electron te
peraturesTF.Te.Tmin , where the lower limit is determined
by the requirementl e,d. For some metals such as lead a

e

ity

FIG. 2. The nonlinear modification of the temporal envelope
the laser pulse during propagation in a Cu waveguide for differ
values of the distance of propagation.z50 cm, initial pulse, solid
line; z54.5 cm, dashed line;z510.5 cm, short-dashed line. Param
eters are the same as for Fig. 1 and are given in the text.
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magnesium, this condition is fulfilled at room temperatu
but for metals such as copper and aluminum this requirem
of sufficiently small electron mean free path is satisfied
Tmin>T*5(TlatTF)1/2'0.5 eV for typical parameters of me
als ~TF'10 eV,Tlat'2.631022 eV5300 K!. However, due
to heating of the wall, the time during which the mean fr
path is longer than the skin depth is usually short compa
to the pulse duration.

FIG. 3. The maximum values of the laser pulse intensity on
waveguide axis~solid line! and maximum electron temperature
the walls~line with squares! as functions of the distance of the las
pulse propagation in an Al waveguide. For comparison, this int
sity as computed by Eqs.~11! and ~18! is given in the linear case
~short-dashed line!. Parameters are given in the text.
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The propagation of short laser pulses in waveguid
where the walls have already been ionized will be the sub
of a forthcoming paper.

The nonlinear phenomena discussed might be obse
experimentally by measurements of the energy and temp
shape of the laser pulse transmitted through a metallic
low waveguide provided that the linear damping does
depend on the roughness of the surface of the metallic w
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FIG. 4. The nonlinear modification of the temporal envelope
the laser pulse during propagation in an Al waveguide for differ
values of the distance of propagation.z50 cm, initial pulse, solid
line; z54.5 cm, dashed line;z510.5 cm, short-dashed line. Param
eters are the same as for Fig. 1 and are given in the text.
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