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Nonlinear propagation of short intense laser pulses in a hollow metallic waveguide
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The propagation of a short intense laser pulse in the femtosecond range in a hollow metallic waveguide gives
rise to heating of the metallic wall. The temperature of the degenerate electron gas in the wall is increased
during the pulse duration and this heating affects the propagation and dissipation of the laser pulse. Analytical
and numerical analysis shows that, as the dissipation is increased, the leading edge of the pulse decreases more
slowly than the rear, resulting in a pulse shortening.
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[. INTRODUCTION perature in the walls is assumed to remain less than the
Fermi temperature. In addition the pulse duration is taken to

Recent progress in the generation of ultraintense short I&be so small that the ions of the metal lattice may be consid-
ser pulsegsee, for example, Refl1]) has made possible a ered as immobile.
number of scientific and technical applications, such as The analytical and numerical solutions of the basic equa-
p|asma_based partic]e acce|eratm}5 X-ray |aseri3], iner- tions show that the trailing part of a laser pulse dissipates
tial confinement fusiori4], and laser induced nuclear reac- more than the leading one. As a result of this nonlinear effect
tions[5]. The propagation of a pulse over a long distance ighe form of the propagating pulse is changed so that the pulse
a crucial condition for all these applications. However, theduration decreases and the overall pulse attenuation in-
length of the high intensity laser region is typically limited creases. Naturally, the nonlinear effects become weaker in
by the laser diffraction, which is twice the Rayleigh length.the process of pulse propagation as its intensity decreases.
Various methods are now being investigated to overcome
this limitation. One of them is based on the relativistic and Il. BASIC EQUATIONS
ponderomotive self-channeling of pulses in a plagéjaAn- . , ,
other method is to guide a laser pulse in a preformed plasma 10 investigate the problem of the nonlinear effects due to
density chann€7] produced as a result of gas ionization by N€ating of waveguide walls on short laser pulse propagation
another laser pulg@] or by slow capillary dischargg9]. An ~ We study here for simplicity the slab geometry. Let us con-
alternative approach is the use of solid guides, namely, cagider @ waveguide with metallic walls gt =a and with axis
illary tubes. alongOZ, the_ d|rect|on of propagatlon._ _

The transmission of laser pulses up to 1 TW through hol- The electric field of the laser pulse is taken in the form
low glass capillary tubes with diameters of the order of 100 -
um was studied first ifi10] and for laser pulses with power E=Re[Eexp —iwt+ikz)},

10 TW in[11]. In both of these experiments the guiding was )

multimode, leading to a complex transverse intensity reparvherew andk are the frequency and the axial component of
tition of the transmitted light. Monomode guiding in hollow the wave vector of the laser radiation, respectively, and
capillary dielectric tubes of intense laser pulses 10 E(Y.zt) is the slowly varying(on the scales 4/ and 1k)
Wi/cn?) over 100 Rayleigh lengths was demonstratedl?. ~ complex amplitude of the field. For the pulse envelope
Experiments with higher pulse intensities in metallic and di-E(Y,z,t) we have from Maxwell's equations

electric hollow tubes as well as with gas filled tubes are now
in progress.

Within the usual linear theory, the propagation of electro-
magnetic waves in a capillary tube is supposed to be inde-
pendent of the wave intensitgee, for examplg,13]). This  whereV = kc?/ w is the group velocity and is the dielectric
approximation becomes invalid for high intensity laserconstant, assumed to be equal to unity in the vacuum part of
pulses, as the properties of the tube walls and of the fillinghe waveguide|f/|<a). The effect of group velocity disper-
gas are modified by the laser pulse. In the case of sufficientlgion is omitted, assuming that the nonlinear effect of the wall
low gas pressure the nonlinear effects arising because of gagating is more important for the evolution of the laser pulse
ionization and walls heating may be treated as independenénvelope. Thus small corrections due to dispersion of the

The aim of this paper is to formulate the basic equationglielectric function of the wallg, its space and time deriva-
describing self-consistently the short intense laser pulséves, and higher order derivatives of the electric field enve-
propagation and wall heating in the case of a hollow metallidope are omitted in this equation.
waveguide. For simplicity, the propagation of the laser pulse Multiplying Eq. (1) by the complex conjugate amplitude
will be considered in a plane waveguide. The electron temE* and integrating ovey from —c to + we arrive at the
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following equation for the electromagnetic energy variation L
in each cross section of the laser pulse propagating in the k(" =5all7 g/ +2n), n=012.... (7)
waveguide:

This expression together with Eq8)—(5) gives the follow-

2 @
(iﬂ/ ﬁ) fa ﬂdy: — ﬂf Im(e)|E|2dy, (2) ing ratio of the laser field at the walll,, to the field on the
ot 99z) ) -4 8m Am Ja ’ waveguide axi€:
where symmetry of the fieltE(—y)|=|E(y)| was assumed Ew . m(1+2n)
and the small value of the energy in the skin layers of the Eol 2 J«la ®

walls was neglected in comparison with the energy in the

vacuum part of the waveguide. For each modé4), Egs.(3) and(8) enable one to write down

The transverse structure of the waveguide modes is detethe equation for the electromagnetic energy variat@nin
mined by Eq.(1) and by the boundary conditions corre- the form
sponding to the continuity of the tangential components of

the electric and magnetic fields at the wall surfages d ) o |Eyl? [~

+a. The explicit analytical form of the mode structure can 5'”|Eo(§72)| =—2y5 B, L Im(e)

be found if the spatial variation of the dielectric constant g

(due to heating of the walls by the laser pulsesmall on the Xexd -2 Rek)(y—a)ldy, (9

scale of the skin depth. This is just the case of the high

frequency skin effectsee, e.g.[14]) when the real part of where we introduced the new variablesand é=z—Vt,

the dielectric constar(vhich determines the field structore which determine the distance of the laser pulse propagation
remains constant while the small imaginary pgdrh e<|e]]  and the form of the pulse envelope in the comoving frame.
responsible for the laser pulse absorption can be changekhe group velocities of distinct modes are different, but, in
substantially due to the heating of the waveguide walls duraccordance with Eq(1), for not very high mode numbers
ing the laser pulse propagation. The physical conditions fothey are close to the speed of light:

this regime will be discussed later. With these restrictions in

mind, let us specify the energy conservation i@y for dif- Vo= ke - (1+2n)%(\)\? 10
ferent waveguide modes. 9=y - © 32 la (10
A. S-polarized laser field (TE modes It is worth noting also that in a linear regime, when ém
In this case the electric fielt=(E,,0,0) has arx com- =Im e;=const, Eq/(9) takes the form
ponent only and a solution of Eql) can be found in the P o E,|2
— 2 _=—_ | —°
form ﬁzln|E0(§,z)| 2kg VyRaxa| B Im €,
Ex=Eq(z—Vt,2) Ya(Y), 3) (1D
where for symmetrical modes which can be obtained directly from E€l) by introducing
Eo(&,2) =Eq(&)exp(—Kks2) in Eq. (3). The imaginary part of
cos{k(j‘)y), lyl<a the longitudinal wave vectdtj is determined by the disper-
Yn(y)= bexd—«(y|-a)] |y|>a (4) sion equation, which follows from Eq(l), through the

imaginary part ofk(") specified by Eq(6). Therefore it is
k=k?—(w?/c?) e in accordance with Eq(1), and Rex  given by
>0, while Ree<0 for metallic walls. The continuity oE,

2 2
andJE, /dy=B, at the waveguide wallg=*a, 7 (1+2n)° o

K0=8 Re(w)[x]%ad Vg M €0
b=cogk{"a), (5)
in full agreement with Eqs(8) and (11).
kb=k{" sin(k{"a),
B. P-polarized laser field (TM modes)
determines the boundary field amplitude at the walhd the

. ) . In this case the laser pulse has only>anomponent for
dispersion equation for the transverse wave vekci@r:

the magnetic fieldB, and two components of the electric
field
K
tan ki“)a) = W (6)
L E,=——, E=—1——. (12)
For wide enough waveguidém comparison with the laser

wavelengthh=2mc/w<a) and for modes with not very Let us use for they component of the electric field a form
high numbers), when|«|>k{", the solutions to Eq(6) are  analogous to Eq(3):
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Ey=Eo(z—Vgt,2) Ya(y), (13 in full agreement with Eqs(11) and (18).

Equations(8), (18), and(9) show that the attenuation of
where the transverse structure of the modes is determined byM modes due to absorption in the metallic walls is much
Eq. (4). The continuity of tangential componeris and B, higher, by a factor ofe|>1, than that of TE modes with the
at the waveguide wallg= *a, which corresponds in accor- same mode number. The absorption increases strongly for

dance with Eq(12) to the continuity ofdE,/dy and eE,, higher mode numbers as 412n)?, and decreases for wider
leads to the following boundary conditions: waveguides asa 3. These equations, providing lenis
- known, describe the laser pulse propagation in an absorbing
eb=cogki"a), (148 metallic waveguide with regard to a nonlinear modification
of the pulse’s temporal shape due to the heating of the walls
kb=k{"sin(k{"a), (14D py laser radiation.

and to the dispersion equation for the transverse wave vector )
k(M C. Model of metallic walls
L

To describe the high frequency response of the metallic

tarkMa) = —< 15 walls we use the Drude-Sommerfeld model for the dielectric
ank}"a)= ekl (15 constant of metal§15,16:
2
Under the conditionk{"|<|«/e| [i.e., (1+n)\/a<4/e|*?], mq_ (19
the solutions of this equation are w(w+iv)’
m_ T, € _ wherew, and v are the plasma and collision frequencies of
k"= 2a 1 Ka) (1+2n), n=012.... (19 electrons, respectively. For laser wavelengths of the order of

1 pm, the inequalityw,> w is valid; the electron collision
Due to Egs.(12), the longitudinal componert, is propor-  frequency has to be small compared to the laser frequency

tional to the transverse derivative Bf : (v<w). These conditions correspond to the high frequency
skin effect[14] when the real and imaginary parts of the
_. CJEy dielectric constant are given by
E,=i——. a7
w Jdy ) )
w w, vV
It is evident from Eqs(13), (4), and (16) that, inside the Ree=— w—S Im égw—g; (20)

waveguide [y|<a), the amplitude ofE, is small in com-
parison withE, (as|k{”|x<1), while in the walls (y|>a)
the inverse ratio is valid: |E,/E,|*=|e[>1. This means
that, in the left hand side of the conservation &y, only
the transverse componeRBt, has to be taken into account,
while in the right hand side of E¢2) the main component of
the laser field is the longitudinal orig, . Equationg17) and

The energy of a short, subpicosecond laser pulse, is trans-
ferred mainly to electrons while the change in the lattice
temperatureT,; is relatively small. Therefore the electron
thermal energy is determined mainly by the processes of la-
ser heating and electron heat conduction:

(13) together with(14) and (16) determine the ratio of the iTe 4 ITe w
component of the laser field at the wkl}(y=a)=E,, to the C i 3_( vl by Im(e)|E|?, (21
y component field on the waveguide afig(y=0)=E,: y y &
E,] 7 (1+2n) whereT, is the electron temperatur€;the thermal capacity
. = 2 aolc (18 and 1 the thermal conductivity in the case of a degenerate
0

electron gas T.<Tg) have the forms

As a result, for each TM mode the equation for electromag- 2

netic energy variatiori2) has exactly the same for®) as C(To)= W_n L; k(T = EVZ C(Te) (22)

for TE modes, but in the case offapolarized laser field the ¥ 2 T T 3R (T

ratio |E,,/E,|? is determined by Eq18). The group veloci-

ties of TM modes are determined as before by @q) if the  Tg and Vg are the Fermi temperature and velocity, respec-
mode number is not very high: f12n<4a/(\|e|*?). For tively, andn, is the density of conduction electrons.

the propagation of the TM mode in a linear regime, when For sufficiently low intensities of the laser radiation at the
Im e=Im e;=const, Eq.(9) takes the form(11) which again  walls, when the electron temperatufg does not exceed the
can be obtained directly from Eq(l) with Ey(&,2) Fermi temperaturd ¢, the plasma frequency, can be as-

=Eq(£)exp(—Kj2) in Eq. (13). Therefore the imaginary part sumed to be a constant and the temperature dependence of

of the longitudinal wave vector is given by the electron collision frequency has the fofrv]
k,,_wz (1+2n)? o | . . T2 s
0T g RG(K)(w/C)ZaSV_g m <o v(Te) =70 +TFTIat ' @3
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wherevy~T,,/% is the electron-phonon collision frequency
and the lattice temperatuig, is assumed to be larger than
the Debye temperature. The second term in @8) corre-
sponds to electron-electron collisioh5,16 and becomes

predominant for a sufficiently overheated electron system

whenT>T* = (T, Tg)Y?~0.3 eV for typical parameters of
metals(Te~5 eV, Tj,~2.6x 10 2 eV=300K).
It should be noted that in Eq21) the collisions of elec-

trons with the metal boundaries were omitted. This mean¥

that this assumption is correct if the skin depsi« !

=clwy, is large compared to the electron mean free path

~Ve/v. Also, the concept of a temperature also supposes

the smallness of, in comparison with the scale of tempera-

ture variations, which can be of the order of the skin depth.

At room temperature the ratioj(l.), calculated on the base
of data taken fromi15], is of the order of 0.3—0.5 for copper,

near to 0.8 for aluminum, and around 4 for lead. Therefore

this assumption is acceptable for lead from room temper
ture, while for Cu and Al it is quantitatively correct after
some preheating of electrons from room temperatur& o
>T*,

As long as the electron collision frequeneyis small
compared to the laser frequency,
written asT.<T* (w/vy)*? the imaginary part of the dielec-
tric constant is determined by EqR0) and(23):

Ime—@ 1+ Tg >=Im(e) 1+ (23 ) (24
w’ TeTiat 0 TeTa)

In the frame comoving with the laser pulse and with vari-
ablesé=z—V4t andz, which were used in E(9), the heat
conduction Eq(21), in view of Egs.(22)—(24), can be trans-
formed for the function

Te
G(¢Yy,2)=InY(¢y,2)=In| 1+ TFTIat),
to the equation
_ F{ wp PG
9E ~Bl(é2)exg —2-~(y—a)|-D exp(—G)ﬁ—yz.
(25)

The laser pulse intensity on the waveguide ak(g,z)

=c|Eq(&,2)|%/87 is determined forS or P polarization by
the x or y component of the laser electric field envelq@e
or (13), respectively;

2 1 V2

—§CVO,

4 ro)\z VO
CmlcTy C

Ew
E

(26)

ro=e?mc? is the classical electron radius, aftl,/Eo| is

determined by Eq(8) or Eqg. (18) for TE or TM modes
respectively. By means of the expressi@4) the tempera-
ture dependence of the laser pulse absorption in(8gcan

be explicitly written through the functio:

PHYSICAL REVIEW E 64 016404

J
Eln 1(&,2)

-
a

® prd
ex T Y,

r%xawn—Z%?w—a>

(27)

here Rex has been taken as,/c and Xg is the linear
attenuation coefficient determined by Eg1) and, in accor-
dance with Eq(24), equal to

Eyl?
Eo

c

"”__

h=——
Vga

prO

w2

2 (28)

Going back to the heat conduction equati@d), one can
get some insight into the heating mechanism in the wall by
considering the characteristic length of diffusibg, which

ol

45 defined as

VE
3P

KTTp

< (29)

a condition that can bﬁ/hererp is the laser pulse duration. The comparison of the

diffusion lengthL with the skin depthd~ x %, where en-
ergy deposition occurs, leads to two different regimes for the
heating of the wall. IfLp> &, the laser energy deposited in
the skin depth diffuses from the metallic surface and the
heating is dominated by thermal diffusion. lf;<4d, the
thermal conduction is blocked and the energy deposition oc-
curs in the skin depth; then one can neglect the diffusion
term in the heat conduction equation and this can be done
provided the following inequality is satisfied:

2
e

TFTIat

2
o7y VE
3

Vo

@p

1+

>

(30

¢’

This last regime gives rise to local heating: the tempera-
ture in the skin depth increases on a much shorter time scale
and reaches much higher values than in the regime controlled
by conduction. These effects are due to the dependence of
the diffusion coefficient on the inverse square of the electron
temperature as shown by Eq22) and(23).

From the previous expressions for teeand B fields in
the waveguide and using the Poynting vector, one can ex-
press the flux of energy that is dissipated in the Wig)l and
the laser flux at the center of the hollow metallic wave guide
®.. The ratio of these two fluxes can be written ®polar-
ization as

(bw_ m2(14+2n)2 v(Te)

C}TC_ 8k%a? 0 o, (3D
and forP polarization as

d,,  72(1+2n)? »(Te) @

by _ m(L+20)7 1(To) wy @2

D, 8k-a ®w o

If the absorbed flux at the wall is greater than the flux for
which plasma formation occurs at the metal wall during the
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pulse duration of the laser, the model will not hold and theThe solution(37) evidently shows that the leading part of the
thermal capacity and conductivity of the plasma produced alaser pulse §—0) evolves as in the linear case while the
the wall have to be taken into account together with therear part of the pulse dissipates more strongly due to the wall
electron-electron collision frequency in the plasma. heating. This effect leads to shortening of the pulse during its
Therefore, in this model of a degenerate electron gas, thpropagation in the waveguide. Equati(8Y) can be used for
set of equation$25)—(28) describes self-consistently the la- a crude estimation of the pulse length decrease. For a long
ser pulse propagation in a metallic waveguide with heatinggnough distance of propagation, the full width at half maxi-
of waveguide walls as long as the electron temperature renum duration of the pulsé-yyy decreases as the inverse
mains less than the Fermi temperature of the metal and gmwer of the laser intensity and of the length of propagation:
long as no ionization takes place.
n2 1 In2

| (2)==— —5—, 7>— (38
l1l. SIMPLIFIED ANALYTICAL SOLUTION FWHM Blo koz 077 BloL

(LOCAL HEATING ) . . .
As an example let us consider the laser pulse with the carrier

For short enough laser pulses and for metals with not todrequencyw=2x 10" s™* and durationr,= 50 fs, propagat-
small electron collision frequencieg, the heat conductivity ing in the form of the fundamental TM mod@&+£0) into a
has no significant influence on the variation of the electrometallic waveguide made of lea,=2.13<10'° s, V¢
temperature(the corresponding conditions will be derived =1.83x 10° cm/s, vo="7.1x 10" s 1 [15]) with a width 2a
laten. In this case the second term in the right hand side of=40um. The thermoconductivity term in E¢R1) is smaller

Eq. (25 can be neglected and the solution of E2p) can be  than the term related to thermocapacity due to the inequality
written in the form
(volw)>(w,1/3)(VEIC)%

, which is valid for the parameters indicated above. The maxi-
mum laser intensity, at the entrance of the waveguide is
. taken to be 18" W/cn?. Then in accordance with E¢39)
Go(é’,z)EG(E,y:a7z)=BJ [(¢',2)dé’. (33)  for distances of propagation exceeding 20 cm the pulse
3 length decreases as

G(§,y,2)=Go(§,z)exp[—Z%W—a)

Equation(27), which gives the shape of the laser pulse as it | rwhm /L~ 20/z.
propagates along the waveguide, can be written as

% IV. NUMERICAL RESULTS

d 0
Eln 1(£,2)=— G—O[exp(Go) —1]. (34 The set of Eqs(25)—(28), describing the evolution of the
laser pulse shape and of the temperature in the wall as the
In the limit Go— 0, which corresponds to the omission of pulse propagates along the waveguide, was solved numeri-
nonlinear effects due to wall heating, this equation is transeally for the main TM mode witm=0 in Eq. (18). The

formed to the linear Eq(11). initial temporal laser pulse envelope was taken to be Gauss-
The explicit analytical solution to the set of EqR9), ian:
(30) can be found for small variations of the initial laser )
pulse shape wheGy<1 and in Eq.(29) the approximation | —0)=| —4In2 39
[(§,2)=1(&,z=0) can be used. Then we have (£2=0)=loex : (c~rp)2 ’ (39
1(é,2)=1(&,2=0) with the FWHM pulse duratiorr,= 100 fs, intensity on the
L waveguide axis at the entrance of the capillbgy: 3x 10™°
" S ) W/cm 2, and wavelengthh =0.8 um (w=2.35x 10 s 1),
X — + - = . :
exp{ 2koz| 1 ZBL 1(¢',2=0)d¢ ” The width of the Cu waveguide was taken a&=220um,

(35 and the other parameters wergl5] Tg=8¢V, v,
=0.4x10"s !, andw,=1.6x10"°s .
To point out the nonlinear effect of the laser pulse shape The results of the calculations are presented in Figs. 1 and
deformation due to the heating of the waveguide walls, let ug- Figure 1 shows the normalized on-axis inten$ify(2)/lo

consider the initially rectangular laser pulse envelope and maximum electron temperatuFg max/ Tr reached on the
wall as functions of the distance of laser pulse propagation.
1(£,2=0)=1[O(£+L)—0O(&)], (36) The result of the linear theoil1) is also shown in Fig. 1 by

a short-dashed line. It is evident that the heating of the wave-
whereL=cr, is the initial pulse length. With Eq32) the  guide walls leads to enhanced laser pulse dissipation in com-

solution (31) takes the form parison with the linear regime described by Efl). The
maximum temperature of the walls decreases with increasing
1(&,z)=1gexd —2kpz(1+3B10/€))], —L=¢<O. distance as the pulse intensity becomes lower due to absorp-

(37) tion in the walls. Figure 2 demonstrates the effect of the laser
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z [cm) FIG. 2. The nonlinear modification of the temporal envelope of

the laser pulse during propagation in a Cu waveguide for different
FIG. 1. The maximum values of the laser pulse intensity on thevalues of the distance of propagatia0 cm, initial pulse, solid
waveguide axigsolid line) and maximum electron temperature of line; z=4.5cm, dashed ling=10.5 cm, short-dashed line. Param-
the walls(line with squarelsas functions of the distance of the laser eters are the same as for Fig. 1 and are given in the text.
pulse propagation in a Cu waveguide. For comparison, this intensity
as computed by Eq$11) and(18) is given in the linear casghort- V. DISCUSSION AND CONCLUSIONS

dashed ling Parameters are given in the text. . . )
The propagation of a short intense laser pulse in a hollow

pulse shortening due to the wall heating in qualitative agreemetallic waveguide is accompanied by heating of the metal-
ment with the simplified solutio37),(38). lic walls. If the temperature of the electrons of the walls
In order to check that plasma formation at the metallicincreases substantially within the laser pulse duration, the
wall can be discarded, the absorbed laser flux at the metalliproperties of the walls are changed and this nonlinear effect
wall has to be less than the flux for which ablation and ion-modifies the conditions of pulse propagation. In this paper
ization take place for copper and for laser pulses of the samee investigated the high frequency skin effect when the non-
duration; this flux has been measured to be arourd@? linear effects are due to variations of the electron collision
W/cn? [18]. To get an estimation of the flux absorbed at thefrequency in a metallic waveguide, therefore modifying the
metallic wall at the maximum of the laser pulse, we usedissipation of the laser pulse energy into the walls.
expressiorn(32), with the maximum value of the temperature  The set of Eqs(25)—(28), obtained together with Eq8)
reached by the wallafter the maximum of the laser pujs&s  or Eq.(18) for TE or TM mode, respectively, describes self-
it appears from Fig. 1, 2.8 eV, this gives an overestimatedonsistently the heating of waveguide walls and the laser
value of the absorbed flux of>810' W/cn?, less than the pulse propagation in the waveguide. The analytical and nu-
threshold for ablation and ionization. merical analysis of these equations shows that the wall heat-
Analogous results for an Al wave guide of the same widthing results in two points. First, the attenuation of the intense
2a=20um are presented in Figs. 3 and 4. In this casdaser pulse increases in comparison with the linear regime,
the parameters werg-=11 eV, v,=1.25x10" s71, wp,  Which is valid for weak laser pulses. Secondly, the temporal
=2.32x10'® 571 [15], and the maximum initial laser pulse form of the laser pulse is changed in the process of pulse
intensity wasl,=0.75x 10'® W/cn?. Concerning plasma propagation. The energy of the leading part of the pulse de-
formation, using the same arguments one finds that the algreases more slowly than that of the rear part, resulting in
sorbed flux at the Al wall is less thanx@L0'° W/cn?, well  laser pulse shortening.
within the threshold for plasma formation. Our model of metallic waveguide walls is quantitatively
As a consequence of the higher electron-phonon collisiogorrect in the case of a degenerate electron gas with the
frequencyy, in Al, the laser pulse absorption is greater thanelectron mean free path=Vg /v smaller than the skin depth
in the Cu waveguide and is closer to the linear regimed=c/w,. These conditions imply the range of electron tem-
Therefore the effect of pulse shortening is not so properaturesTe>Tg>T,,,, Where the lower limit is determined
nounced, as is seen from a comparison of Figs. 2 and 4. by the requiremenit,<<J. For some metals such as lead and
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g—ed PR S | [ P
-100 -50 0 50 100
., 1 " 1 1 i (] 1 0.0a)
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z[cm] FIG. 4. The nonlinear modification of the temporal envelope of

) . ) the laser pulse during propagation in an Al waveguide for different
FIG. 3. The maximum values of the laser pulse intensity on the g)yes of the distance of propagatian=0 cm, initial pulse, solid

waveguide axigsolid line) and maximum electron temperature of line: z=4.5 cm, dashed ling=10.5 cm, short-dashed line. Param-
the walls(line with squarekas functions of the distance of the aser gers are the same as for Fig. 1 and are given in the text,
pulse propagation in an Al waveguide. For comparison, this inten-
sity as computed by Eq$11) and (18) is given in the linear case The propagation of short laser pulses in waveguides
(short-dashed line Parameters are given in the text. where the walls have already been ionized will be the subject
of a forthcoming paper.
: . e ' . The nonlinear phenomena discussed might be observed
magnesium, this condition is fulfilled a; room .temper_ature’experimentally by measurements of the energy and temporal
but for_metals such as copper and aluminum t_h|3 regu_lremerghape of the laser pulse transmitted through a metallic hol-
of sufficiently small electron mean free path is satisfied for|qy, waveguide provided that the linear damping does not
Tmin=T*=(TiaT¢) Y2~ 0.5 eV for typical parameters of met- depend on the roughness of the surface of the metallic wall.

als(Te~10 eV, T ,~2.6x 10 2 eV=300 K). However, due

to heating of the wall, the time during which the mean free ACKNOWLEDGMENT
path is longer than the skin depth is usually short compared This work was supported by INTAS Project No.
to the pulse duration. 97-10236.
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